The Effect of Air Pollutant & Control Device Characteristics on Emission Rates

Martin Hochhauser

ACHD - Pittsburgh, PA

&

Robert Betterton

SCDHEC – Columbia, SC

Effects on Controlled Emissions

Pollutant Characteristics

Type of Control Device

Design of Control Device

Most Pollutants are Heterogeneous

- CO is a gas and consists of one compound
- NO_x is both NO & NO₂
- Hg may be Metallic, an Oxide, Combined with Chlorine or in an Organic Compound
- Solids may vary in many ways and also contain additional pollutants

Variations in Particulate

- Mean Particle Size
- Size Distribution
- Particle Shapes
- Density

These determine Aerodynamic Diameter

Additional Particulate Properties

- Adhesion
- Cohesion
- Surface Electrical Conductivity

These also determine Control Device Collection and Operability

Inside Cyclone Collector

- Gas turns in Cyclone
- Inertia causes dust movement away from gas flow towards the wall

 Separation increases with Particle Size

Dust Cyclone

- Used for Larger Particulate
- Some units capture PM₁₀

 Note opportunity to release (re-entrain)
 Particulate from Walls

Electrostatic Precipitator (ESP)

- Discharge Wires are Midway between Collection Plates
- Ridges in Plates
 Protect Dust Collected
 on Plates from Re entrainment into Gas
 Flow Stream

Fabric Filter

- Pulsejet Type
- "online cleaning"
- Existing Dust Cake on bags filters dust in gas
- Emissions depend on type of Bag Media and condition of Filter Bags

Bag Cleaning Motion

- Filtration example shows Bag collecting Dust
- Cleaning example shows Bag inflated by Compressed Air Pulse
- Aggressive Pulsing will damage Bag

Felt Filter Media

 Filament Structure is Random, producing Media without large Holes

Synthetic fiber produces long, round filaments

Expanded PTFE Membrane

- Notice fine structure of Surface Membrane
- Membrane acts as a Filter, both, just after Bag Cleaning and from Sieving during normal Operation
- Very effective Dust Removal

Sample Filter Bags

Types shown presently used in Small Collectors

Modern Cartridge
 Filters are not shown

Typical Control Efficiencies

- General graphs based on different Coal Fired Electric Utility Units
- Inlet Dust Loadings
 are similar, providing
 a basis to describe
 efficiency for Fabric
 Filters

FIGURE 2. Typical Fractional Efficiencies For Existing Collectors (From Electric Power Research Institute Economics of Fabric Filters vs. Precipitators, Denver, CO June 1978)

Particulate Emission Trends

- Graph is for MSW
 Incineration
- Initially all controls shown were ESP
- Most Fabric Filters shown follow an SDA
- Only Filterable Dust is shown

